organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fu-You Pan,* Jian-Guo Yang, Ding-Ben Chen and Ling Huang

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: panfy@tzc.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.041 wR factor = 0.085 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[4-phenyl-5-(1*H*-1,2,4-triazol-3-yl)-4*H*-1,2,4-triazol-3-yl] disulfide

The title compound, $C_{20}H_{14}N_{12}S_2$, was synthesized by the reaction of 3-hydrazino-1*H*-1,2,4-triazole with phenyl isocyanate in benzene and by ring closure in an alkaline medium. Intermolecular N-H···N hydrogen bonds are observed and these form a five-membered ring.

Received 3 February 2005 Accepted 28 February 2005 Online 11 March 2005

Comment

Azole derivatives, such as derivatives of pyrazole, imidazole, triazole (including benzotriazole), tetrazole, indole, *etc.*, exhibit extensive biological activities. They have become a central focus in the study of agricultural chemicals, adjustment reagents for plant growth, and so on (Haddock & Hopwood, 1982). We have reported the crystal structures of two triazole compounds (Pan & Yang, 2005; Yang & Pan, 2004). In a search for more effective antibacterial medicines, we have synthesized the title compound, (I).

The dihedral angle between the C15–C20 and N7/N8/C12/ N9/C11 rings is 70.06 (8)° and that between the C5–C10 ring and the N1/N2/C2/N3/C1 plane is 68.48 (8)°. The torsion angles C1–S1–S2–C11 and S2–S1–C1–N3 are -78.49 (9) and -65.25 (17)°, respectively. Intermolecular N11–H11···N2ⁱ and N11–H11···N6ⁱ hydrogen bonds form a five-membered ring [Fig. 2; symmetry code (i): 2 - x, 1 - y, -z]. An intermolecular N5–H5···N12ⁱⁱ hydrogen bond is also observed [symmetry code (ii): 2 - x, $\frac{1}{2} + y$, $\frac{1}{2} + z$].

Experimental

3-Hydrazino-1*H*-1,2,4-triazole (0.02 mol, 2.54 g) was dissolved in benzene (50 ml) and phenyl isocyanate (0.02 mol, 2.70 g) was added. The mixture was refluxed for 8 h and the precipitate formed was collected by filtration and washed with benzene. The product was recrystallized from benzene and dried under reduced pressure to give 4-phenyl-1-(1*H*-1,2,4-triazole-3-hydrazino)thiosemicarbazide. Ring closure of this compound in an alkaline medium is a well known method for the synthesis of the title compound (Cansiz *et al.*, 2004). The compound (2.0 mmol, 0.97 g) was dissolved in dimethylform-

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

amide (30 ml) and kept at room temperature for 40 d, producing colourless single crystals, which were collected and washed with distilled water.

Crystal data

$C_{20}H_{14}N_{12}S_2$
$M_r = 486.55$
Monoclinic, $P2_1/c$
a = 9.8647 (8) Å
b = 13.3308 (10) Å
c = 16.9443 (14) Å
$\beta = 101.630(1)^{\circ}$
V = 2182.5 (3) Å ³
Z = 4

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.916, T_{\max} = 0.922$
12720 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.085$ S = 0.874763 reflections 363 parameters

$D_x = 1.481 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 2532
reflections
$\theta = 4.9 - 48.9^{\circ}$
$\mu = 0.28 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.32 \times 0.30 \times 0.29 \text{ mm}$

4763 independent reflections 3123 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 27.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -17 \rightarrow 12$ $l = -15 \rightarrow 21$

All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0331P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.29 \text{ e} \text{ Å}^{-3}$

Figure 2

Diagram of (I), showing the intermolecular hydrogen bonds as dashed lines (the symmetry code is as in Table 1).

Table 1Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline & N11 - H11 \cdots N2^{i} \\ N11 - H11 \cdots N6^{i} \\ N5 - H5 \cdots N12^{ii} \end{array}$	0.90 (2)	2.49 (2)	2.999 (2)	117.0 (16)
	0.90 (2)	2.18 (2)	3.045 (3)	163.6 (19)
	0.86 (2)	2.17 (3)	3.003 (3)	163 (2)

Symmetry codes: (i) 2 - x, 1 - y, -z; (ii) 2 - x, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

All H atoms were located in a difference map and their parameters were refined. The N-H distances are 0.86 (2) and 0.90 (2) Å and the C-H distances are in the range 0.82 (3)–0.97 (2) Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2002); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. M203115).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.Cansiz, A., Koparir, M. & Demirdag, A. (2004). Molecules, 9, 204–212.

Haddock, E. & Hopwood, W. A. (1982). GB Patent No. 2 078 212. Pan, F. Y. & Yang, J. G. (2005). *Acta Cryst.* E**61**, 063–064.

Yang, J.-G. & Pan, F.-Y. (2004). Acta Cryst. E60, 02342-02344.