Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fu-You Pan,* Jian-Guo Yang, Ding-Ben Chen and Ling Huang

Department of Chemistry, Taizhou University, Taizhou 317000, People's Republic of China

Correspondence e-mail: panfy@tzc.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.041$
$w R$ factor $=0.085$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[4-phenyl-5-(1H-1,2,4-triazol-3-yl)-4H-1,2,4-triazol-3-yl] disulfide

The title compound, $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{12} \mathrm{~S}_{2}$, was synthesized by the reaction of 3-hydrazino- 1 H -1,2,4-triazole with phenyl isocyanate in benzene and by ring closure in an alkaline medium. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are observed and these form a five-membered ring.

Comment

Azole derivatives, such as derivatives of pyrazole, imidazole, triazole (including benzotriazole), tetrazole, indole, etc., exhibit extensive biological activities. They have become a central focus in the study of agricultural chemicals, adjustment reagents for plant growth, and so on (Haddock \& Hopwood, 1982). We have reported the crystal structures of two triazole compounds (Pan \& Yang, 2005; Yang \& Pan, 2004). In a search for more effective antibacterial medicines, we have synthesized the title compound, (I).

(I)

The dihedral angle between the C15-C20 and N7/N8/C12/ $\mathrm{N} 9 / \mathrm{C} 11$ rings is $70.06(8)^{\circ}$ and that between the C5-C10 ring and the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 2 / \mathrm{N} 3 / \mathrm{C} 1$ plane is $68.48(8)^{\circ}$. The torsion angles $\mathrm{C} 1-\mathrm{S} 1-\mathrm{S} 2-\mathrm{C} 11$ and $\mathrm{S} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 3$ are $-78.49(9)$ and $-65.25(17)^{\circ}$, respectively. Intermolecular $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$ and $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 6^{\mathrm{i}}$ hydrogen bonds form a five-membered ring [Fig. 2; symmetry code (i): $2-x, 1-y$, $-z]$. An intermolecular $\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{~N} 12^{\mathrm{ii}}$ hydrogen bond is also observed [symmetry code (ii): $2-x, \frac{1}{2}+y, \frac{1}{2}+z$].

Experimental

3-Hydrazino-1 H -1,2,4-triazole ($0.02 \mathrm{~mol}, 2.54 \mathrm{~g}$) was dissolved in benzene (50 ml) and phenyl isocyanate ($0.02 \mathrm{~mol}, 2.70 \mathrm{~g}$) was added. The mixture was refluxed for 8 h and the precipitate formed was collected by filtration and washed with benzene. The product was recrystallized from benzene and dried under reduced pressure to give 4-phenyl-1-(1 H -1,2,4-triazole-3-hydrazino)thiosemicarbazide. Ring closure of this compound in an alkaline medium is a well known method for the synthesis of the title compound (Cansiz et al., 2004). The compound ($2.0 \mathrm{mmol}, 0.97 \mathrm{~g}$) was dissolved in dimethylform-

Received 3 February 2005 Accepted 28 February 2005 Online 11 March 2005

Figure 1
The structure of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.
amide (30 ml) and kept at room temperature for 40 d , producing colourless single crystals, which were collected and washed with distilled water.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{12} \mathrm{~S}_{2} \\
& M_{r}=486.55 \\
& \text { Monoclinic, } P 2_{d} / c \\
& a=9.8647(8) \AA \\
& b=13.3308(10) \AA \\
& c=16.9443(14) \AA \\
& \beta=101.630(1)^{\circ} \\
& V=2182.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.481 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2532
reflections
$\theta=4.9-48.9^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.32 \times 0.30 \times 0.29 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-	4763 independent reflections
detector diffractometer	3123 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.046$
Absorption correction: multi-scan	$\theta_{\max }=27.0^{\circ}$
$(S A D A B S ;$ Bruker, 2002 $)$	$h=-12 \rightarrow 12$
$T_{\min }=0.916, T_{\max }=0.922$	$k=-17 \rightarrow 12$
12720 measured reflections	$l=-15 \rightarrow 21$

Refinement

$$
\begin{aligned}
& \text { Refinement on } F^{2} \\
& R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \\
& w R\left(F^{2}\right)=0.085 \\
& S=0.87 \\
& 4763 \text { reflections } \\
& 363 \text { parameters }
\end{aligned}
$$

Figure 2
Diagram of (I), showing the intermolecular hydrogen bonds as dashed lines (the symmetry code is as in Table 1).

Table 1
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.90(2)$	$2.49(2)$	$2.999(2)$	$117.0(16)$
$\mathrm{N}^{\mathrm{i}} 11-\mathrm{H} 11 \cdots \mathrm{~N} 6^{\mathrm{i}}$	$0.90(2)$	$2.18(2)$	$3.045(3)$	$163.6(19)$
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{~N} 12^{\mathrm{ii}}$	$0.86(2)$	$2.17(3)$	$3.003(3)$	$163(2)$

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were located in a difference map and their parameters were refined. The $\mathrm{N}-\mathrm{H}$ distances are 0.86 (2) and 0.90 (2) \AA and the $\mathrm{C}-\mathrm{H}$ distances are in the range 0.82 (3)-0.97 (2) \AA.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. M203115).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Winsonsin, USA.
Cansiz, A., Koparir, M. \& Demirdag, A. (2004). Molecules, 9, 204-212.
Haddock, E. \& Hopwood, W. A. (1982). GB Patent No. 2078212.
Pan, F. Y. \& Yang, J. G. (2005). Acta Cryst. E61, o63-o64.
Yang, J.-G. \& Pan, F.-Y. (2004). Acta Cryst. E60, o2342-o2344.

